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The development and maturation of cortical GABAergic interneurons has been

extensively studied, with much focus on nuclear regulation via transcription

factors. While these seminal events are critical for the establishment of

interneuron developmental milestones, recent studies on cellular signaling

cascades have begun to elucidate some potential contributions of cell

signaling during development. Here, we review studies underlying three broad

signaling families, mTOR, MAPK, and Wnt/beta-catenin in cortical interneuron

development. Notably, each pathway harbors signaling factors that regulate a

breadth of interneuron developmental milestones and properties. Together, these

events may work in conjunction with transcriptional mechanisms and other

events to direct the complex diversity that emerges during cortical interneuron

development and maturation.
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Introduction

The processes by which cortical GABAergic interneurons (CINs) develop, differentiate
and acquire their unique properties have been studied for many years. Insights into the
transcriptional cascades that guide these events have been well investigated, especially in
early developmental stages, when CIN progenitors are first programmed and start to diverge
into unique trajectories. In recent years, further stages during development and maturation
have been explored, including how the local environment impacts their molecular and
electrophysiological properties. Moreover, cellular signaling events may be involved in
facilitating transcription factor recruitment, linking extracellular cues, and orchestrating
neuronal activity, which may be translated downstream into nuclear events or other
signaling intermediates.

Multiple ventral telencephalic regions, including the medial ganglionic eminence
(MGE), caudal ganglionic eminence (CGE), and preoptic area (POA) generate CINs
(Wonders and Anderson, 2006; Miyoshi et al., 2010; Gelman et al., 2011). The
production, initial development and roles of CINs in brain disorders have been reviewed
elsewhere (Marín, 2012; Hu et al., 2017; Wamsley and Fishell, 2017; Lim et al., 2018)
and will not be covered extensively here. The MGE gives rise to ∼70% of CINs,
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with roughly equal numbers expressing parvalbumin (PV) or
somatostatin (SST). The CGE gives rise to ∼20% of CINs that
broadly express the 5HT3A receptor (Rudy et al., 2011), which
can be subdivided into groups positive for vasoactive intestinal
peptide (VIP) and neurogliaform cells that express markers such as
REELIN and NDNF (Miyoshi and Fishell, 2011; Abs et al., 2018).
Importantly, while these broad groups of CINs have common
markers, they can also be subdivided into more refined classes,
suggesting the presence of multiple CIN types that together drive
brain inhibition.

How these diverse properties arise has been a massive
endeavor in the field, many decades of which determined
transcriptional codes necessary to drive development of diverse
CIN lineages. Ventral telencephalon identity is initially formed
via a sonic hedgehog (SHH) morphogen gradient, which induces
the expression of transcription factors (TFs) such as Nkx2.1, Dlx2,
and Gsx that promote the early development of MGE and CGE
(Xu et al., 2005, 2008, 2010). In the MGE, initial patterning is
determined by the transcription factor, Nkx2.1; its loss results in
an expansion of adjacent ganglionic eminences (Sussel et al., 1999).
Importantly, Nkx2.1 is necessary for Lhx6 expression (Du et al.,
2008), a cardinal TF required for the emergence of both PV and
SST lineagess (Liodis et al., 2007; Zhao et al., 2008). While not
required for initial MGE patterning, loss of Lhx6 leads to CINs with
CGE molecular and electrophysiological properties (Vogt et al.,
2014), suggesting some role in regional cell fate determination.
To date, a cardinal TF that drives CGE patterning, like Nkx2.1
for MGE, has not been discovered for CGE. However, the TFs
Gsx1 and 2 are important for CGE development (Corbin et al.,
2000; Toresson et al., 2000; Yun et al., 2001; Xu et al., 2010; Wang
et al., 2013), even though no patterning equivalent to Nkx2.1 exists
for the CGE. Some other genes like Prox1 and Nr2f1 and 2 also
contribute to CGE-lineage CIN properties (Miyoshi et al., 2015;
Touzot et al., 2016).

While TF cascades are necessary for many CIN developmental
programs, it is unlikely they are the sole driver of CIN cell fate and
function. In recent years, the role of the local environment and
neural activity upon CINs has arisen as a potential candidate in
either directing and/or refining the development and maturation
of these diverse cells (Patz et al., 2004; De Marco García et al.,
2011; Close et al., 2012; Denaxa et al., 2012; Dehorter et al.,
2015; Wamsley and Fishell, 2017). Other studies have begun to
suggest that cellular signaling arising in cytoplasmic compartments
may also have a prominent role in CIN development and cellular
properties (Vogt et al., 2015; Malik et al., 2019; McKenzie et al.,
2019; Angara et al., 2020; Wundrach et al., 2020). Herein, we review
these recent findings in the context of TF studies and suggest
potential ways in which these observations may work together
during CIN development and maturation.

Transcription factor overview

Seminal studies on CIN cell fate and development have
primarily investigated core TFs expressed in unique and
overlapping patterns in the MGE, CGE and adjacent regions
(Sussel et al., 1999; Zhao et al., 2008; Long et al., 2009; Flandin
et al., 2011; Gelman et al., 2011). While these will not be covered

in detail here, many of these TFs have been attributed to various
CIN developmental milestones, including emergence of unique
molecular, cellular and electrophysiological properties (Wonders
and Anderson, 2006; Miyoshi et al., 2010; Kessaris et al., 2014; Hu
et al., 2017; Wamsley and Fishell, 2017).

Within the MGE, Nkx2.1 is a primary organizer of regional
identity, while Gsx1 and 2 contribute to properties of CGE
development but not in the same manner as Nkx2.1 in the MGE
(Sussel et al., 1999; Corbin et al., 2000; Toresson et al., 2000;
Yun et al., 2001; Xu et al., 2010; Wang et al., 2013). After these
initial patterns are established, more restricted genes are expressed
together or sequentially that determine the cardinal lineages of
each region. Lhx6 expression is necessary for the emergence of
PV and SST expressing CINs (Liodis et al., 2007; Zhao et al.,
2008). While less clear how CGE-lineage CINs are fated, TFs
such as Prox1 and Nr2f1 and 2 have been implicated (Miyoshi
et al., 2015; Touzot et al., 2016). These cardinal TFs further
regulate subsequent TFs and regulatory genes, whose functions
are attributed to CIN development and function. The MGE is the
most studied region, with TFs such as Sox6, Mafb/cMaf, and Satb1
genetically downstream of Lhx6 that specify distinct aspects of CIN
development (Zhao et al., 2008; Azim et al., 2009; Batista-Brito
et al., 2009; Close et al., 2012; Denaxa et al., 2012; Vogt et al., 2014;
Pai et al., 2019, 2020). Whether they are subject to regulation from
cellular signaling proteins is just beginning to be examined. The
role of signaling proteins during CIN milestones is highlighted in
Figure 1.

mTOR

The mechanistic target of rapamycin (mTOR) signaling
pathway is critical for cellular growth, proliferation and synaptic
properties (Laplante and Sabatini, 2012; Lipton and Sahin, 2014).
Activation of the mTOR pathway is generally initiated via
growth factors binding to their respective receptor tyrosine kinase
receptors, which transduce a signal for PI3-kinase to phosphorylate
the kinase, AKT (Alessi et al., 1997). AKT then phosphorylates
the protein encoded by Tsc2, Tuberin, leading to its inhibition
(Manning et al., 2002; Potter et al., 2002). In the absence of AKT
activity, Tuberin forms an obligate complex with Hamartin, the
gene encoded by Tsc1 and acts as a GTPase activating protein
toward Rheb (Inoki et al., 2003), halting its function. Rheb activity
results in mTOR activation (Patel et al., 2003). While this pathway
has been well studied, the functional consequences of mTOR
signaling in several cell types is still lacking, with only a few studies
in CIN development.

Many mTOR pathway genes are ubiquitously expressed, thus,
CINs are hypothesized to be impacted by this cascade. Earlier
studies found that the TrkB receptor promoted CIN tangential
migration and discovered that an upstream activator of the mTOR
pathway, PI3-kinase, promoted tangential migration of CINs
(Polleux et al., 2002). Another study showed that conditional loss
of Tsc1 using the pan GABAergic Dlx5/6-Cre led to a loss of
GABAergic lineages and increased sensitivity to a seizure inducing
drug (Fu et al., 2012); both activation of TrkB and loss of Tsc
genes result in hyperactivity of mTOR signaling. Recently, AKT
activity mediated by a class of protocadherin, was shown to regulate
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FIGURE 1

The mTOR, MAPK, and Wnt/Beta-catenin signaling pathways and CIN developmental events (Right). CIN developmental key milestones (Left).
Signaling pathway proteins. Some of these signaling proteins are found at the cell membrane while many can be found in cytosolic compartments.
Each protein may exhibit differential impacts on the CIN developmental milestones, colors around each protein match to the boxes around these
events.

programmed CIN apoptosis necessary for the proper balance of
excitation and inhibition in the brain (Carriere et al., 2020).
Overall, these studies implicate key mTOR pathway players in CIN
development.

Other studies have investigated the use of more restrictive
genetic manipulation of the mTOR pathway. One approach
examined the loss of Pten, which inhibits mTOR signaling, from
MGE progenitor cells using Nkx2.1-Cre, which begins to express
in cells including MGE progenitors (Xu et al., 2008). Similar to
the loss of cells using pan GABAergic Dlx5/6-Cre to delete Tsc1
(Fu et al., 2012), this study also found a reduction in Nkx2.1-Cre-
lineages and concluded that these cells accumulated in the lateral
cortex during tangential migration; many Pten deleted cells were
SST + that underwent apoptosis, skewing the SST/PV ratio (Vogt
et al., 2015). In line with these data, expression of an active PI3K
mutant in Nkx2.1-Cre lineages also led to fewer CINs (D’Gama
et al., 2017). Interestingly, another group deleted mTOR itself using
Nkx2.1-Cre and also found less CINs (Ka et al., 2017), suggesting
that mTOR signaling needs to be balanced for proper development.

Using a more refined approach, the mTOR pathway inhibitor,
Tsc1, was deleted from MGE lineages using SST-Cre (Malik
et al., 2019). Key molecular and electrophysiological phenotypes
occurred in SST-lineages after loss of Tsc1, with these cells acquiring
PV-like properties. These included the increased expression of
PV and the fast-inactivating potassium channel, Kv3.1, as well as
elevated fast-spiking properties (Malik et al., 2019). This latter
study implied that mTOR signaling may have a role in establishing
the distinct properties of SST and PV CINs that had not been
appreciated before. Recently, a pathway was elucidated whereby
the ErbB4 receptor in PV CINs inhibited Tuberin to locally

elevate mTOR activity and translation of critical synaptic proteins
(Bernard et al., 2022), exemplifying the range of this pathway
during development.

Finally, studies have revealed the potential for faster
physiological screening of human genetic variants associated with
neurological disorders by taking advantage of the unique properties
of CINs, the ability once transplanted into a host environment to
disperse and integrate into the target microcircuit (Alvarez-Dolado
et al., 2006; Bráz et al., 2012; Howard and Baraban, 2016). Using
this approach, translational studies have been performed to link
human genetic variation with CIN development and function.
Human PTEN genetic variants were screened for their ability
to complement mouse Pten loss of function phenotypes in an
in vivo assay of CIN development. This approach showed that
these gene variants were hypofunctional at promoting normal
CIN development (Vogt et al., 2015). Further studies investigated
human genetic variants in TSC1, exposing similar hypofunction
during CIN development (Wundrach et al., 2020).

MAPK

Like the mTOR signaling pathway, the RAS/MAPK signaling
cascade has several proteins expressed ubiquitously, although
some may be more enriched in CINs versus other neurons
(Ryu et al., 2019). This cascade responds to various growth
cues and neural activity and can signal to cytoplasmic targets
as well as impact nuclear transcription, which in turn influences
cell proliferation, maturation, survival and synaptic plasticity
(Waltereit and Weller, 2003; Wiegert and Bading, 2011; Sun et al.,
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2015; Tyssowski et al., 2018). This cascade is also primarily made
up of interacting GTPases and kinases that can be grouped into
activators and inhibitors of the pathway that we will review; for
more detailed description of the pathway, see (Seger and Krebs,
1995; Sun et al., 2015).

An early study implicated that GABAergic dysfunction
underlies spatial memory deficits in an Nf1 deletion model (Costa
et al., 2002); using the same Cre line to express active KRAS
had similar effects on behavior and increased GABAergic synapses
(Papale et al., 2017). Nf1 inhibits the enzymatic activity of the
RAS GTPase in the initial stages of the MAPK pathway. Thus,
Nf1 loss results in elevated MAPK signaling. Two recent studies
investigated the role of hyperactivating the MAPK pathway in more
restricted Nkx2.1-Cre MGE lineages; loss of Nf1 and expression of
a constitutively active Mek allele, led to a roughly 50% reduction in
PV expressing CINs in each model (Angara et al., 2020; Holter et al.,
2021). These data uncovered a role for MAPK hyperactivity on the
development of distinct classes of CINs. Importantly, the studies
revealed common phenotypes in families of signaling proteins
during CIN development, which could have implications for other
MAPK syndromes and common comorbid diagnoses, including
autism (Adviento et al., 2014).

While no studies have yet determined the role of the pathway
on CGE lineages, there is some evidence for ERK1/2 signaling
in CGE proliferation (Stanco et al., 2014). Moreover, a study
revealed a role for MAPK hyperactivity on a cardinal MGE TF,
Lhx6. Specifically, Loss of Nf1 in Nkx2.1-Cre lineages resulted
in a depletion of Lhx6 transcript (Angara et al., 2020); this
was also prominent in mutants that only lost one allele of Nf1,
which is similar to humans diagnosed with Neurofibromatosis
1. Thus, in addition to altering PV expression in CINs, elevated
MAPK signaling may influence the development of these cells
via regulation of core cardinal TFs. While this study specifically
examined Lhx6 expression, other core programs that direct CIN
development have not yet been assessed in an unbiased manner,
which may lead to further key discoveries that MAPK signaling
impinges upon.

In addition to the RAS/MAPK pathway that involves
RAF/MEK/ERK signaling there are other MAPK signaling cascades
that may impact CIN development. One example comes from the
parallel MAPK signaling cascade that transduces signals through
the JNK proteins. Initial studies have identified JNK1 as necessary
for proper CIN tangential migration (Myers et al., 2014) and further
studies suggested that laminar position of CINs could also be
regulated by JNK dysfunction (Myers et al., 2020).

Wnt/beta-catenin

While less studied in CIN development there have been
inroads made into canonical wingless-related integration site
(Wnt)/beta-catenin and related non-canonical signaling events.
This pathway has early effects on MGE progenitors via canonical
Wnt/beta-catenin signaling, as loss of beta-catenin resulted in
less proliferating MGE cells (Gulacsi and Anderson, 2008). One
examined the role of the Wnt/beta-catenin scaffold gene, Dact1,
and found an impact on forebrain synapse development (Arguello
et al., 2013).

WNT ligands are also enriched closer to caudal regions of the
MGE and the MGE responds in turn to WNT signaling in these
regions, which predominantly generate SST + CINs (McKenzie
et al., 2019). While this study did not find a significant role for
canonical WNT signaling in the promotion of SST CINs, non-
canonical signaling via the RYK receptor emerged as a potential
moderator of SST expression in some caudal MGE populations
when active RYK protein signaling was modulated. However, RYK’s
role during development is complicated, as loss of function in
MGE progenitors leads to several unidentified lineages with no
observable ratio change in SST and PV CINs, suggesting a further
role in MGE progenitors. Moving forward, this story may help
bridge other work on Ryk and CINs (Chang et al., 2017).

The TFs Mafb and c-Maf are involved in GSK3-beta signaling;
phosphorylation of MAF proteins by GSK3-beta leads to increased
protein activity downstream of MAFs (Rocques et al., 2007; Herath
et al., 2014). Deletion of Mafb and c-Maf using Nkx2.1-Cre result in
an increase in SST + CINs at the expense of fated PV + progenitors
in addition to gross loss of CINs (Pai et al., 2019). Later studies
implicated other important TFs as targets of the Mafs, including
Mef2c (Pai et al., 2020), as a primary driver of some phenotypes;
Mef2c was initially identified as a TF involved in PV CIN fate and
development (Mayer et al., 2018) and its use as an early marker
of PV-lineage CINs was hinted at by expression in early postnatal
CINs (Pai et al., 2020). While the full spectrum of Wnt/beta-catenin
signaling functions are still unknown in many brain cell types,
including CINs, mutations in similar GSK3-beta phosphorylation
sites on MAF lead to neural symptoms in humans, including
seizures and intellectual disability (Niceta et al., 2015).

Discussion

The unique roles of cellular signaling proteins in the
development and function of CINs is just beginning to be
uncovered. Here, we focused on three critical pathways with
broad applications for many CIN subgroups. Their role in brain
development and specific CIN milestones reveal distinct and shared
functions that will have major implications for the development
field as well as neurological/neuropsychiatric disorders caused by
protein disruptions. While the mTOR, MAPK, and Wnt/Beta-
catenin pathways are just some of the cellular signaling families
that could modulate CIN development, future studies are likely
to uncover more signaling implications. When combined with the
instruction of TFs and activity-dependent maturation, it suggests
the potential for complex regulation of CIN development.

An interesting finding from these initial studies is that
within the core signaling families, distinct proteins can
exhibit unique functions in CINs. For example, both PTEN
and TSC proteins are inhibitors of the mTOR pathway, yet
uniquely impact SST CIN numbers, PV axon outgrowth, PV
expression and electrophysiological properties (Vogt et al.,
2015; Malik et al., 2019; Haji et al., 2020). Some of these
discrepancies may arise from the timing of gene deletion
during development. Moreover, differential loss of PTEN or
TSC can result in opposite impacts on AKT (Cantley and Neel,
1999; Huang and Manning, 2009); loss of each results in the
same increased activity of mTOR, yet PTEN loss increases AKT
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signaling while TSC loss decreases AKT activity. Which signaling
events may be required for differential CIN milestones is an
important future direction.

Distinct proteins in a cascade may have common phenotypes
during CIN development, as was noted for manipulations of Nf1
and Mek that led to hyperactivity of the MAPK pathway and
subsequent similar losses of PV + CINs (Angara et al., 2020;
Holter et al., 2021). This latter observation may be critical to
uncover broader impacts that a signaling family of proteins may
have during CIN development or even for disorders caused by
these signaling proteins. For example, syndromes caused by various
mutations in RAS/MAPK signaling proteins often lead to common
comorbid symptoms, including ADHD and autism (Gutmann
et al., 2012; Adviento et al., 2014; Vithayathil et al., 2018). As
a family, the RASopathies account for ∼1:1,000 diagnoses. The
potential discovery of shared CIN phenotypes due to various
protein disruptions may be key in uncovering future therapeutics
to treat RASopathy symptoms and a further understanding of CIN
development, each of which could impact many.

Other considerations include the possibility that each signaling
protein within a family may crosstalk with other distinct family
members. For example, in cancer cells it is common that the mTOR
and RAS/MAPK proteins interact (Mendoza et al., 2011). Also, the
mTOR activator, AKT, can phosphorylate and inhibit GSK3beta in
the WNT/beta-catenin family (Cross et al., 1995). Whether these
events also occur in CINs has yet to be tested but could lead to
more complex considerations during the development of CINs and
the impacts of each protein. Moreover, emerging data suggest that
these signaling proteins may also influence some cardinal CIN TFs,
unveiling another level of CIN regulation. LHX6, which is necessary
for the emergence of both SST and PV expressing CINs from the
MGE (Liodis et al., 2007; Zhao et al., 2008), is repressed in Nf1

loss of function/hyperactive MAPK mutants (Angara et al., 2020).
Moreover, the Maf TFs, which regulate SST/PV cell properties (Pai
et al., 2019, 2020), are targets of GSK3beta (Rocques et al., 2007;
Herath et al., 2014), suggesting that cell signaling regulation of
CIN cardinal TFs may be more common than previously expected.
Future studies are needed to elucidate the full extent of these
regulatory cascades to understand how CIN development can be
regulated at multiple levels within the cell.
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